Seed methods for linear equations in lattice qcd problems with multiple right-hand sides
نویسندگان
چکیده
We consider three improvements to seed methods for Hermitian linear systems with multiple right-hand sides: only the Krylov subspace for the first system is used for seeding subsequent right-hand sides, the first right-hand side is solved past convergence, and periodic reorthogonalization is used in order to control roundoff errors associated with the Conjugate Gradient algorithm. The method is tested for the case of Wilson fermions near kappa critical and a considerable speed up in the convergence is observed.
منابع مشابه
New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملDeflated Gmres for Systems with Multiple Shifts and Multiple Right-hand Sides∗
We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...
متن کاملar X iv : 0 70 7 . 05 02 v 1 [ m at h - ph ] 3 J ul 2 00 7 DEFLATED GMRES FOR SYSTEMS WITH MULTIPLE SHIFTS AND MULTIPLE RIGHT - HAND SIDES
We consider solution of multiply shifted systems of nonsymmetric linear equations, possibly also with multiple right-hand sides. First, for a single right-hand side, the matrix is shifted by several multiples of the identity. Such problems arise in a number of applications, including lattice quantum chromodynamics where the matrices are complex and non-Hermitian. Some Krylov iterative methods s...
متن کاملDeflation for inversion with multiple right-hand sides in QCD
Most calculations in lattice Quantum Chromodynamics (QCD) involve the solution of a series of linear systems of equations with exceedingly large matrices and a large number of right hand sides. Iterative methods for these problems can be sped up significantly if we deflate approximations of appropriate invariant spaces from the initial guesses. Recently we have developed eigCG, a modification o...
متن کاملDeflated BiCGStab for linear equations in QCD problems
The large systems of complex linear equations that are generated in QCD problems often have multiple right-hand sides (for multiple sources) and multiple shifts (for multiple masses). Deflated GMRES methods have previously been developed for solving multiple right-hand sides. Eigenvectors are generated during solution of the first right-hand side and used to speed up convergence for the other r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008